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Abstract: A statistical study was made of six head kinematic
response curves for a set of 57 human -X impact acceleration runs
conducted at the Naval Biodynamics Laboratory. The acceleration
levels ranged from six to fifteen g's. Of the six responses
analyzed, three measured head linear displacement and rotation in
the mid-sagittal plane with respect to the sled, and three measured
head linear and angular acceleration in the X-Y plane of the head
anatomical co-ordinate system ([1,2]. Key points characterizing
each head kinematic response variable were identified and regressed
on sled acceleration profile and head orientation parameters
[3;4:5], Cubic splines were fitted to the predicted kinematic
response points.

Introduction: Human and rhesus head kinematic data can both
be used to develop human head injury prediction models for impact
acceleration environments. While human head-neck kinematics for
the -X vector direction have been successfully modelled utilizing
a deterministic head-neck 1linkage model [1,6-10] driven by
accelerations at T-1, the first thoracic vertebral body, the lack
of rhesus T-1 data precludes the development of a similar animal
model. The large database of rhesus kinematic, injury and pre-
injury data [11,12] collected at the Naval Biodynamics Laboratory
requires other means for scaling human and rhesus head kinematic
responses. Although no deterministic linkage model is available
for the rhesus kinematics, perusal of Figures 1-14 comparing 15g
-X human head kinematic responses to 89g -X rhesus head kinematic
responses provides convincing visual evidence that, except for
scale, the underlying structure of key human and rhesus responses
is essentially the same. Since sled acceleration profiles and head
initial orientation parameters are available for both human and
rhesus impact acceleration runs, it was decided to determine the
extent to which human and rhesus kinematic behavior regressed on
these parameters. This paper presents the first stage of this
study, namely, the statistical curve fitting of key human =X head
kinematic response curves.

. The first step in the statistical curve fitting
procedure is to identify key points, such as onset points, primary
and secondary peaks, and offset points together with their times
of occurrence for each key head kinematic variable (see Figures 15-
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20). For data reduction purposes, an entire kinematic response
curve is represented as a single vector containing key point
magnitudes and times of occurrence. This vector is regressed on
an input vector containing the various sled acceleration profile
and head initial orientation parameters using a multivariate
regression program. The mean predicted response points for a given
set of input parameters is then fitted with a cubic spline to
provide a predicted response curve for the particular head
kinematic variable.

Results: Five vgriables were sufficient to predict all key
points chosen with R° values ranging from 0.6 to 0.9. These
variables were the initial linear displacements of the head in the
X and Z directions, the initial rotation of the head about the head
anatomical Y-axis, the peak.  sled acceleration and the endstroke
sled velocity. Also, the R? values associated with the dominant
peaks were generally among the highest. No statistical measure was
made of the extent to which the predicted curves fit the observed,
but visual comparisons (see Figures 21-26) suggest a very good fit,
especially considering the small number of available data points
chosen.

Conclusions: The results of this study clearly support the
feasibility of a statistical approach to the scaling of human and
rhesus -X head kinematics. Current analyses at the Naval
Biodynamics Laboratory using more sophisticated statistical curve
fitting procedures for both human and rhesus -X head kinematic
responses is yielding extremely encouraging results.
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Figure 1. Sled acceleration profile for 15g, =X human run.
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Figure 2. Sled acceleration profile for 89g, -X animal run.
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Figure 3. Y-axis component of head angular acceleration for
15g, =X human run. :
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Figure 4. Y-axis component of head angular acceleration for
89g, =X animal run.
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Figure 5. X-component of head linear acceleration for 15g,
-X human run. -

500
~
v 0
W
s
Y
& -500-
]—
(W]
= 1000~
=z
o
E | <1500
e
L
o
(D)
<
_2500 T T T
0.000 0.050 0.100 0.150 0.200

TIME (SEC)

Figure 6. X-component of head linear acceleration for 89g,
-X animal run.
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Figure 7. Z-component of head linear acceleration for 15g,
=X human run. :
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Figure 8. Z-component of head linear acceleration for 89g,
-X animal run.
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Figure 9. Y-axis component of head angular displacement for
15g, =X human run. -
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Figure 10. Y-axis component of head angular displacement for
89g, =X animal run.
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Figure 11. X-component of head linear displacement for 15g,
=X human run. :

-1.080
7
o
]
o —1.1001
<
>
w —1.120‘
=
w
Q
3 =1.140
a
%}
=)
x —-1.1604
S
Z
=

_1.180 T T

0.000 0.050 0.100 0.150
TIME (SEC)

Figure 12. X-component of head linear displacement for 89qg,
=X animal run.
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Figure 13. Z-component of head linear displacement for 15g,
= X human run.
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Figure 14. Z-component of head linear displacement for 89g,
-X animal run.
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Figure 15. Onset, primary and secondary peaks, and offset
points chosen for modelling the Y-axis component of head
angular acceleration for 15g, =X human run.

50

0

~50:

—100+

-1350+

—2001

—-2501

ACCELERATION (METERS/SEC2)

2

=300 r . : .
0.000 0.050 0.100 0.150 0.200 0.250

TIME (SEC)

Figure 16. Onset, primary and secondary peaks, and offset
points chosen for modelling the X-component of head linear
acceleration for 15g, =X human run.

220



150
P 5
(]
2 100
L
& 50 2
£ M
L
= 0 Lok} S
z 1 Rl
R |
(o'
5 4
§ =100
< 2

-150 T T T T

0.000 0.050 . 0.100 0.150 0.200 0.250
TIME (SEC)

Figure 17. Onset, primary and secondary peaks, and offset
points chosen for modelling the Z-component of head linear
acceleration for 15g, =X human run.
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Figure 18. Onset, primary peak and offset points chosen for
modelling the Y-axis component of head angular displacement
for 15g, =X human run.
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Figure 19. Onset, primary peak and offset points chosen for
modelling the X-component of head linear displacement for 15g,
=X human run.
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Figure 20. Onset, primary peak and offset points chosen for
modelling the Z-component of head linear displacement for 15g,
=X human run.
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Figure 21. Comparison plot of observed and predicted response
for the Y-axis component of head angular acceleration for 15g,
=X human run.
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Figure 22. Comparison plot of observed and predicted response
for the X-component of head linear acceleration for 15g, -X

human run.
223 -



200
o 807
&
& 100 -
&
e 50
o
;'E:’ 0
=z —50 -
O
T . =004 s e S PREDICTED
& —_ OBSERVED
2= —-150 1
5]
O =200
<
-250 : : . '
0.000 0.050 0.100 0.150 0.200 0.250
TIME (SEC)

Figure 23. Comparison plot of observed and predicted response
for Z-component of head linear acceleration, 15g, =X human
run.
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Figure 24. Comparison plot of observed and predicted response
for the Y-axis component of head angular displacement for 15g,
=X human run. 294
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Figure 25. Comparison plot of observed and predicted response
for the X-component of head linear displacement for 15g, =X
human run.
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Figure 26. Comparison plot of observed and predicted response
for the Z-component of head linear displacement for 15g, =X

human run.
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DISCUSSION

PAPER: Statistical Approach to Human Kinematic Response to Impact

SPEAKER: Terry Watkins, Naval Biodynamics Lab
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